首页> 外文OA文献 >ResuMatcher: A Personalized Resume-Job Matching System
【2h】

ResuMatcher: A Personalized Resume-Job Matching System

机译:ResuMatcher:个性化的简历匹配系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Today, online recruiting web sites such as Monster and Indeed.com have become one of the main channels for people to find jobs. These web platforms have provided their services for more than ten years, and have saved a lot of time and money for both job seekers and organizations who want to hire people. However, traditional information retrieval techniques may not be appropriate for users. The reason is because the number of results returned to a job seeker may be huge, so job seekers are required to spend a significant amount of time reading and reviewing their options. One popular approach to resolve this difficulty for users are recommender systems,which is a technology that has been studied for a long time.In this thesis we have made an effort to propose a personalized job-r?sum? matching system, which could help job seekers to find appropriate jobs more easily. We create a finite state transducer based information extraction library to extract models from r?sum?s and job descriptions. We devised a new statistical-based ontology similarity measure to compare the r?sum? models and the job models. Since the most appropriate jobs will be returned first, the users of the system may get a better result than current job finding web sites. To evaluate the system, we computed Normalized Discounted Cumulative Gain (NDCG) and precision@k of our system, and compared to three other existing models as well as the live result from Indeed.com.
机译:今天,Monster和Indeed.com等在线招聘网站已成为人们寻找工作的主要渠道之一。这些网络平台已经提供了十多年的服务,并为求职者和想要雇用人员的组织节省了大量时间和金钱。但是,传统的信息检索技术可能不适合用户。原因是,返回给求职者的结果数量可能很大,因此求职者需要花费大量时间阅读和检查他们的选择。解决用户这一难题的一种流行方法是推荐系统,该技术已经研究了很长时间。在本文中,我们努力提出了个性化的求职经历。匹配系统,可以帮助求职者更轻松地找到合适的工作。我们创建一个基于有限状态换能器的信息提取库,以从rsum和工作描述中提取模型。我们设计了一种新的基于统计的本体相似性度量来比较r?sum?。模型和工作模型。由于最合适的工作将首先返回,因此该系统的用户可能会获得比当前求职网站更好的结果。为了评估系统,我们计算了系统的归一化贴现累积增益(NDCG)和precision @ k,并与其他三个现有模型以及Indeed.com的实时结果进行了比较。

著录项

  • 作者

    Guo, Shiqiang;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号